

#### Transverse Single Spin Asymmetry



TSSA measured via particle production relative to proton spin direction, i.e.:

$$N(\phi) = N_0[1 + PA_N \cos \phi]$$

where P is the polarization

Theoretical expectations via collinear pQCD:

$$A_N \approx \frac{m_q \alpha_s}{p_T}$$

$$A_N|_{p_T = 2GeV/c} \approx 10^{-3}$$

Only small asymmetries predicted

#### **Experimental Observations**



E704 measured A<sub>N</sub> of a polarized proton on fixed target and discovered large A<sub>N</sub> values at large x<sub>F</sub>

Large positive values for  $\pi^+$ Smaller positive values for  $\pi^0$ Large negative values for  $\pi^-$ 

Indicative of a valence quark effect

Positive effect from up-quark Negative effect from down-quark

#### Physical Explanations



Transverse momentum dependence incorporated directly into proton structure function  $\propto \bar{f}_{1T}^{\perp q}(x,\mathbf{k}_{\perp}^2)\times D_{q}^{h}(z)$ 



Correlation between proton and quark spin + polarized quark fragmentation function

$$\propto \delta q(x) \times H_1^{\perp}(z_2, \bar{k}_{\perp}^2)$$

Source separation can be achieved by full reconstruction of the jet fragmentation



#### Higher-twist approach (parallel to above effects):

additional terms incorporated into extended pQCD calculation, different structure func. predicts  $A_N \sim 1/p_T$  at  $p_T >> 1$  GeV/c, in contrast to Collins and so requires high statistics large  $p_T$  measurements (aka inclusive 'jets')

#### **Detector Concept**



#### Existing Jet Measurements





Like the  $\pi^0$  A<sub>N</sub>, modest jet A<sub>N</sub> values are believed to require a large cancellation between contributions of up and down quark jets

With charged particle tracking and large acceptance, fsPHENIX will be able to separate these sources

### Changing the Mix

The Idea: cut on electromagnetic charge within the jet Most Primitive Approach: cut on leading charge, z > 0.5





all jets



leading negative charge



largely clean
extraction
of up quark jets

natural admixture of jet sources

enrichment of down quark jets

#### Example Up & Down A<sub>N</sub> Extraction

measured A<sub>N</sub> with leading charge sign jets

extracted quark A<sub>N</sub> against model inputs





### Different Models, Different Expectations



opportunity to distinguish between leading process-dependent models

#### Jet Substructure





Direct access to Collins physics within the jet

High statistics at large jet energies

#### Drell-Yan

We are also interested in verification of:

$$f_{1T}^{\perp}(x,kt,Q^2)|_{\text{DY}} = -f_{1T}^{\perp}(x,kt,Q^2)|_{\text{SIDIS}}$$



 $p_T > 2GeV/c$ heavy flavor+resonances 10 unlike-sign dimuon mass [GeV/c<sup>2</sup>]

at  $p_T > 2$  GeV/c and large rapidity, DY yields can be accessed at large S/B

We are exploring options to extend measurements to lower p<sub>T</sub>

## Answering Big Questions

#### What is the source of the large TSSA observed in p+p?

Current world data measure a mix of competing effects

New experimental data is needed!

Forward sPHENIX will determine the source of the TSSA by making the **first unambiguous simultaneous measurements** at large x of the competing effects

# Will a <u>universal</u> description of TSSA phenomena work for both e+p and p+p?

Forward sPHENIX will examine the universality of TSSA descriptions by providing complementary p+p measurements to existing and future e+p data and by determination of Sivers-like and Collins-like contributions

More: <a href="https://www.phenix.bnl.gov/plans.html">https://www.phenix.bnl.gov/plans.html</a> (look for white paper link)

<a href="https://www.phenix.bnl.gov/phenix/WWW/publish/dave/sPHENIX/pp\_pA\_whitepaper.pdf">http://www.phenix.bnl.gov/phenix/WWW/publish/dave/sPHENIX/pp\_pA\_whitepaper.pdf</a>